ERAPOL CMD88A PART B Era Polymers Pty Ltd Version No: 2.3 Safety Data Sheet according to WHS and ADG requirements Issue Date: 10/09/2020 Print Date: 10/09/2020 S.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | | |-----------------------------------|--|--| | Product name | ERAPOL CMD88A PART B | | | Synonyms | Not Available | | | Relevant identified uses of the | substance or mixture and uses advised against | | | Relevant identified uses | Polyurethane curative | | | Details of the supplier of the sa | afety data sheet | | | Registered company name | Era Polymers Pty Ltd | | | Address | 2-4 Green Street, BANKSMEADOW NSW 2019 Australia | | | Telephone | +61 (0)2 9666 3788 | | | Fax | +61 (0)2 9666 4805 | | | Website | www.erapol.com.au | | | Email | erapol@erapol.com.au | | | Emergency telephone number | | | | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | | | Emergency telephone numbers | +61 2 9186 1132 | | | Other emergency telephone | +61 1800 951 288 | | Once connected and if the message is not in your prefered language then please dial 01 +61 1800 951 288 # **SECTION 2 Hazards identification** # Classification of the substance or mixture numbers HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | S6 | |--------------------|---| | Classification [1] | Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # Label elements Hazard pictogram(s) # Hazard statement(s) | . , | | |------|--| | H373 | May cause damage to organs through prolonged or repeated exposure. | | H412 | Harmful to aquatic life with long lasting effects. | # Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | Version No: 2.3 Page 2 of 11 Issue Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 P103 Read label before use # Precautionary statement(s) Prevention P260 Do not breathe mist/vapours/spray. P273 Avoid release to the environment. # Precautionary statement(s) Response P314 Get medical advice/attention if you feel unwell. # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--------------------------------------| | 107-21-1 | <10 | ethylene glycol | | 26545-49-3 | <1 | phenyl mercury neodecanoate | | Not Available | to 100 | All other substances - non-hazardous | # **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | # Indication of any immediate medical attention and special treatment needed For acute and short term repeated exposures to aryl and alkylmethoxy compounds of mercury: Absorption proceeds more rapidly than its inorganic counterpart but once inside the body biotransformation releases inorganic mercury. [Ellenhorn and Barceloux: Medical Toxicology] To treat poisoning by the higher aliphatic alcohols (up to C7): - ▶ Gastric lavage with copious amounts of water. - It may be beneficial to instill 60 ml of mineral oil into the stomach. - Oxygen and artificial respiration as needed. - Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens. - To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose. - ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5) # BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - Monitor and treat, where necessary, for shock - Monitor and treat, where necessary, for pulmonary oedema. - Anticipate and treat, where necessary, for seizures. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - ► Give activated charcoal. # ADVANCED TREATMENT - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - ▶ Monitor and treat, where necessary, for arrhythmias. - Fixed an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose. Version No: 2.3 Page 3 of 11 Issue Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 - ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. ----- #### **EMERGENCY DEPARTMENT** - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Acidosis may respond to hyperventilation and bicarbonate therapy. - ▶ Haemodialysis might be considered in patients with severe intoxication. - Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For C8 alcohols and above. Symptomatic and supportive therapy is advised in managing patients. # **SECTION 5 Firefighting measures** # Extinguishing media - Alcohol stable foam. - ► Dry chemical powder - ► BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture | Special nazards arising from ti | ne substrate or mixture | |---------------------------------|---| | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes
of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: | # **SECTION 6 Accidental release measures** **HAZCHEM** # Personal precautions, protective equipment and emergency procedures Not Applicable carbon dioxide (CO2) metal oxides May emit poisonous fumes See section 8 # Environmental precautions See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | |--------------|--|--| | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. | | Contain spill with sand, earth or vermiculite. Stop leak if safe to do so. other pyrolysis products typical of burning organic material. Version No: 2.3 Page 4 of 11 Issue Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - ▶ Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - ► DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. # Other information Safe handling - Store in original containers. - Keep containers securely sealed.No smoking, naked lights or ignition sources. - ► Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities # Suitable container - Metal can or drum - ▶ Packaging as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. - Ethylene glycol: reacts violently with oxidisers and oxidising acids, sulfuric acid, chlorosulfonic acid, chromyl chloride, perchloric acid - forms explosive mixtures with sodium perchlorate - is incompatible with strong acids, caustics, aliphatic amines, isocyanates, chlorosulfonic acid, oleum, potassium bichromate, phosphorus pentasulfide, sodium chlorite • Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more # Storage incompatibility Alcohols • are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water - reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen - react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium - should not be heated above 49 deg. C. when in contact with aluminium equipment # **SECTION 8 Exposure controls / personal protection** # Control parameters # Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-----------------------------|------------------------------------|----------------------|-----------------------|------------------|------------------| | Australia Exposure Standards | ethylene glycol | Ethylene glycol (particulate) | 10 mg/m3 | Not Available | Not
Available | Not
Available | | Australia Exposure Standards | ethylene glycol | Ethylene glycol (vapour) | 20 ppm / 52
mg/m3 | 104 mg/m3 / 40
ppm | Not
Available | Not
Available | | Australia Exposure Standards | phenyl mercury neodecanoate | Mercury, aryl compounds (as
Hg) | 0.1 mg/m3 | Not Available | Not
Available | Not
Available | # Emergency Limits | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | | |-----------------------------|-----------------|--------|---------------|---------|--| | ethylene glycol | Ethylene glycol | 30 ppm | 150 ppm | 900 ppm | | | Ingredient | Original IDLH | | Revised IDLH | | | | ethylene glycol | Not Available | | Not Available | | | | phenyl mercury neodecanoate | 10 mg/m3 | | Not Available | | | Version No: 2.3 Page 5 of 11 Issue Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | # Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|------------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the
extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection # Eye and face protection ► Safety glasses with side shields Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection Hands/feet protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - EN 3/4, AS/N2S 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min Version No: **2.3** Page **6** of **11** Issue Date: **10/09/2020** #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### WARNING: Do NOT use latex or PVC gloves - In 1997, a researcher (Dr. Karen E. Wetterhahn) died from organic mercury poisoning, resulting from a single exposure to dimethylmercury almost a year before. - Heavy metals and organic metal compounds, in particular, have posed special hazards in worker protection. At the time of diagnosis and before she lapsed into a vegetative state, Dr. Wetterhahn asked that her case be made known to others. Permeation testing of the potential of transdermal exposure to dimethylmercury produced the following results*. | Glove material | Thickness in mm* | Breakthrough Time | |----------------------------------|------------------|-------------------| | Nitrile | 0.2 | 0.25 minutes | | Neoprene | 0.8 | <10 mins. | | Butyl | 0.33 | <15 mins. | | Viton | 0.28 | <15 mins. | | Silver Shield | 0.13 | >240 mins. | | Silver Shield &
Neoprene Pair | 0.7 | >240 mins. | *Michael B Blayney: Applied Occupational and Environmental Hygiene: 16, pp 233-236, 2001 * Originally quoted as mil (one mil = 0.001 inches) #### Body protection See Other protection below # Other protection - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. # Recommended material(s) # **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: ERAPOL CMD88A PART B | Material | СРІ | |------------------|-----| | NATURAL RUBBER | A | | NATURAL+NEOPRENE | A | | NEOPRENE | A | | NEOPRENE/NATURAL | A | | NITRILE | A | | NITRILE+PVC | A | | PE/EVAL/PE | A | | PVC | A | | TEFLON | A | | PVA | В | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. # Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | - | A-AUS / Class 1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | # ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # **SECTION 9 Physical and chemical properties** Version No: 2.3 Page **7** of **11** Issue Date: 10/09/2020 # **ERAPOL CMD88A PART B** Print Date: 10/09/2020 | Appearance | White liquid | | | |--|---------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.99-1.05 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point /
freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** | Information on toxicological et | fects | |---------------------------------|---| | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. | | Ingestion | Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. For ethylene glycol: Symptoms following swallowing ethylene glycol include failure of breathing, central nervous system depression, cardiovascular collapse, lung swelling, acute kidney failure, and even brain damage. Swallowing 100 millilitres has caused death. There are three stages of ethylene glycol poisoning. The severity of each stage depends upon the amount of ethylene glycol swallowed. There is usually minimal damage to the liver. In the first 12 hours, central nervous system depression is seen. A temporary feeling of exhilaration occurs, without the odour of ethanol. There may be gastrointestinal complaints including nausea and vomiting. Acidosis, coma, convulsions and seizures may also occur. Disorders in eye movements may occur, although otherwise eye examination usually remains normal. At 12-24 hours after swallowing, effects on the lung and heart appear. These are characterized by fast heart rate, fast breathing, and mildly high blood pressure. Congestive heart failure and circulatory collapse may occur in severe poisonings. Effects on the kidney are seen 24-72 hours post-ingestion and are characterized by reduced urine output, flank pain, death of kidney tubules, kidney failure, and rarely, failure of the bone marrow. Kidney damage may be permanent. Acid base disturbances (acidosis) in the blood result from the formation of glycolic acid and some lactic acid. Animal testing showed that ethylene glycol, if swallowed during pregnancy, may lead to birth defects. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | Version No: 2.3 Page 8 of 11 Issue Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 Eye Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Chronic TOXICITY Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Exposure to ethylene glycol over a period of several weeks may cause throat irritation, mild headache and low backache. These may worsen with increasing concentration of the substance. They may progress to a burning sensation in the throat, a burning cough, and drowsiness. # **ERAPOL CMD88A PART B** | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | | TOXICITY | IRRITATION | |--|--| | ~1220 mg/kg ^[2] | Eye (rabbit): 100 mg/1h - mild | | =4440 mg/kg ^[2] | Eye (rabbit): 12 mg/m3/3D | | 10000 mg/kg ^[2] | Eye (rabbit): 1440mg/6h-moderate | | 398 mg/kg ^[2] | Eye (rabbit): 500 mg/24h - mild | | 5500 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | Inhalation (rat) LC50: 100.2 mg/l/8hr ^[2] | Skin (rabbit): 555 mg(open)-mild | | Oral (cat) LD50: ~1670 mg/kg ^[2] | Skin: no adverse effect observed (not irritating) ^[1] | | Oral (guinea pig) LD50: ~8200 mg/kg ^[2] | | | Oral (mouse) LD50: ~8350 mg/kg ^[2] | | | Oral (mouse) LD50: 5890-13400 mg/kg ^[2] | | | Oral (rabbit) LD50: 7000-9300 mg/kg ^[2] | | | Oral (rat) LD50: ~5000 mg/kg ^[2] | | | Oral (rat) LD50: ~6200 mg/kg ^[2] | | | Oral (rat) LD50: =3.58-12.7 mg/kg ^[2] | | | Oral (rat) LD50: =4000 mg/kg ^[2] | | | Oral (rat) LD50: =4600 mg/kg ^[2] | | | Oral (rat) LD50: =5380 mg/kg ^[2] | | | Oral (rat) LD50: =7712 mg/kg ^[2] | | | Oral (rat) LD50: 4700 mg/kg ^[2] | | | Oral (rat) LD50: 6610-11000 mg/kg ^[2] | | # phenyl mercury neodecanoate | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | Legend: ethylene glycol Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances [Estimated Lethal Dose (human) 100 ml; RTECS quoted by Orica] Substance is reproductive effector in rats (birth defects). Mutagenic to rat cells. For ethylene glycol: # ETHYLENE GLYCOL Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tract. Limited information suggests that it is also absorbed through the airways; absorption through skin is apparently slow. Following absorption, it is distributed throughout the body. In humans, it is initially
metabolized by alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic acid and glyoxal. These breakdown products are oxidized to glyoxylate, which may be further metabolized to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate carbon dioxide, which is one of the major elimination products of ethylene glycol. In addition to exhaled carbon dioxide, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination is rapid and occurs within a few hours. Respiratory effects: Respiratory system involvement occurs 12-24 hours after swallowing sufficient amounts of ethylene glycol. Symptoms include hyperventilation, shallow rapid breathing, and generalized swelling of the lungs with calcium oxalate deposits occasionally appearing in the lungs. Respiratory system involvement appears to be dose-dependent and occurs at the same time as cardiovascular changes. Later, there may be other changes compatible with adult respiratory distress syndrome (ARDS). Swelling of the lung can be a result of heart failure, ARDS, or aspiration of stomach contents. Symptoms related to acidosis such as fast or excessive breathing are frequently observed; however, major symptoms such as swelling of the lung and inflammation of the bronchi and lungs are relatively rare, and are usually seen only in extreme poisoning Cardiovascular effects: Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of ethylene glycol poisoning by swallowing, which is 12-24 hours after acute exposure. The symptoms of poisoning involving the heart include increased heart rate, heart enlargement and ventricular gallop. There may also be high or low blood pressure, which may progress to cardiogenic shock. In lethal cases, inflammation of the heart muscle has been observed at autopsy. Cardiovascular involvement appears to be rare and usually seen after swallowing higher doses of ethylene glycol. In summary, acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown. Gastrointestinal effects: Common early acute effects of swallowing ethylene glycol include nausea, vomiting with or without blood, heartburn and abdominal cramping and pain. One patient showed intermittent diarrhea and pain, and after surgery, deposition of oxalate crystals was shown to have occurred. Version No: **2.3** Page **9** of **11** Issue Date: **10/09/2020** #### **ERAPOL CMD88A PART B** Print Date: 10/09/2020 Musculoskeletal effects: Reported musculoskeletal effects in cases of acute ethylene glycol poisoning include diffuse muscle tenderness and pain, associated with high levels of creatinine in the blood, and jerks and contractions associated with low calcium. Liver effects: Autopsies carried out on people who died following acute ethylene glycol poisoning showed deposition of calcium oxalate in the liver as well as hydropic and fatty degeneration and cell death (necrosis) of the liver. Kidney effects: Adverse kidney effects are seen during the third stage of ethylene glycol poisoning, 2-3 days after acute exposure. Calcium oxalate crystals are deposited in the tubules and are seen in the urine. There may also be degeneration and death of tubule cells, and inflammation of the tubule interstitium. If untreated, the degree of kidney damage progresses and leads to blood and protein in the urine, decreased kidney function, reduction in urine output and ultimately, kidney failure. With adequate supportive therapy, kidney function can return to normal or near normal. Metabolic effects: Metabolic changes can occur within 12 hours of exposure to ethylene glycol. There may be metabolic acidosis, caused by accumulation of glycolic acid in the blood and therefore a reduction in blood pH. The anion gap is increased, due to increased unmeasured anions (mainly glycolate). Effects on the nervous system: Adverse reactions involving the nervous system are among the first symptoms to appear in humans after ethylene glycol is swallowed. These early effects are also the only symptoms caused by unmetabolised ethylene glycol. Together with metabolic effects (see above), they occur from 0.5-12 hours after exposure and are considered to be part of the first stage in ethylene glycol poisoning. Inco-ordination, slurred speech, confusion and sleepiness are common in the early stages, as are irritation, restlessness and disorientation. Later, there may be effects on cranial nerves (which may be reversible over many months). Swelling of the brain (cerebrum) and crystal deposits of calcium oxalate in the walls of the small blood vessels of the brain were found at autopsy in people who died after acute ethylene glycol poisoning. Reproductive effects: Animal testing showed that ethylene glycol may affect fertility, survival of fetuses and the male reproductive organs. Effects on development: Animal studies indicate that birth defects may occur after exposure in pregnancy; there may also be reduction in foetal weight. Cancer: No studies are known regarding cancer effects in humans or animal, after skin exposure to ethylene glycol. Genetic toxicity: No human studies available, but animal testing results are consistently negative. No significant acute toxicological data identified in literature search. disorder is characterized by difficulty breathing, cough and mucus production. #### PHENYL MERCURY NEODECANOATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|----------| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification 🌶 – Data available to make classification # **SECTION 12 Ecological information** # Toxicity | EDADOL OMDOGA DADED | Endpoint Test Duration | | Test Duration (hr) | | Species | Value | | Source | | |----------------------------|------------------------|---------------|--------------------|----------|-------------------------------|-----------------------------|-----------------------|-------------------|--------| | ERAPOL CMD88A PART B | Not Available | Not Available | | | Not Available | Not Available Not Available | | ble Not Available | | | | Endpoint | Test I | Ouration (hr) | Species | | | Value | | Source | | | LC50 | 96 | 96 | | Fish | | >72-860mg/L | | 2 | | ethylene glycol | EC50 | 48 | | Crustace | Crustacea | | >100mg/L | | 2 | | | EC50 | 96 | | Algae or | Algae or other aquatic plants | | 3-536mg/L | | 2 | | | NOEC | 552 | | Crustace | Crustacea | | >=1-mg/L | | 2 | | | | | | | | | | | | | | Endpoint | | Test Duration (hr) | | Species | Value | | Source | | | henyl mercury neodecanoate | Not Available | | Not Available | | Not Available Not Ava | | ailable Not Available | | able | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Mercury may occur in the environment as free mercury, Hg(0), mercury ions in salts and complexes, Hg+ and (Hg2)2+ and as organic mercury compounds. Each species has its own set of physical, chemical and toxicologic properties. In natural systems a dynamic equilibrium between soil and water mercury occurs, determined largely by the physicochemical and biological conditions which pertain. Mercury ion is transported to aquatic ecosystems via surface run-off and from the atmosphere. It is complexed or tightly bound to both inorganic and organic particles, particularly sediments with high sulfur content. Organic acids such as fulvic and humic acids are often associated with mercury not bound to particles. Methyl mercury is produced by sediment micro-organisms, non-biologically in sediments, and by certain species of fish. The methylation of mercury by micro-organisms is the detoxification response that allows the organism to
dispose of the heavy metal ions as small organometallic complexes. Methylation occurs only within a narrow pH range in which the micro-organism might exist and the rate of synthesis depends on the redox potential, composition of the microbial population, availability of Hg2+ and temperature. In addition it has been demonstrated that the livers of yellow-fin tuna and albacore produce methyl mercury results in its removal thus little methyl mercury is found in sediments. Demethylation by sediment micro-organisms also occurs at Version No: 2.3 Page 10 of 11 Issue Date: 10/09/2020 Print Date: 10/09/2020 #### **ERAPOL CMD88A PART B** a rapid rate compared with methylation. The best conversion rate for inorganic mercury to methyl mercury under ideal conditions is less than 1.5% per month. Methyl mercury released into surface waters may also be broken down into mercury when exposed to light. Methyl mercury can be bioaccumulated by planktonic algae and fish. In fish, the rate of absorption of methyl mercury is faster than that of inorganic mercury and the clearance rate is slower resulting in high concentrations of methyl mercury in muscle tissue. The ratio of organic mercury to total mercury is generally high in fish compared with other aquatic organisms. Selenium which is also present in seawater and other seafoods readily complexes with methyl mercury and is thought to have a protective effect against the toxic action of methyl mercury. The danger of methyl mercury poisoning has been illustrated in Minimata, Japan in the late 1950s following industrial release of mercury into the bay which subsequently resulted in at least 1200 cases of poisoning, some fatal. For Ethylene Glycol: Log Kow: -1.93 to -1.36; Half-life (hr) air: 24 hrs; Henry 🗣 s Law Constant: 1.41 💠 10-3 or 6.08 💠 10-3 Pa.m3/mol, (depending on method of calculation); Henry's atm m3 /mol: 2.3x10 atm-m/mol; Vapor Pressure: 7.9 Pa @ 20 C; BOD 5: 0.15 to 0.81, 12%; COD: 1.21 to 1.29; ThOD: 1.26; BCF: 10 to190. Atmospheric Fate: In the atmosphere, ethylene glycol exists mainly in the vapor phase. It is degraded by reactions with hydroxyl radicals, (estimated half-life 24-50 hours). Direct breakdown of the substance by sunlight is not expected. Terrestrial Fate: Soil - The substance is not expected to evaporate from soil surfaces. Ethylene glycol has little or no capacity to bind to soil and will be mobile. Several strains of microorganisms capable of utilizing ethylene glycol as a carbon source have been identified. Plants - Ethylene glycol has been identified as a metabolite of the growth regulator ethylene in a number of higher plants and as naturally occurring in the edible fungus Tricholoma matsutake. Aquatic Fate: Ethylene glycol is not expected to evaporate from water surfaces. The substance is not expected to be broken down by water or bind to suspended particles. The substance has been shown to be rapidly broken down by microorganisms in surface water, (to a lesser extent in salt water). Ecotoxicity: Ethylene glycol does not concentrate in the food chain. The substance is categorized as � readily biodegradable � under both oxygenated and low oxygen conditions. The substance is generally of low toxicity to marine organisms; however, toxic effects have been noted in streams receiving runoff of the substance. Field studies in the vicinity of an airport have reported toxic signs consistent with ethylene glycol poisoning, fish kills, and reduced biodiversity. These effects cannot definitively be ascribed to ethylene glycol. Terrestrial organisms are much less likely to be exposed to ethylene glycol and generally show low sensitivity to the compound. The substance is expected to have low toxicity to birds. #### DO NOT discharge into sewer or waterways #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |-----------------|---------------------------|-----------------------------|--| | ethylene glycol | LOW (Half-life = 24 days) | LOW (Half-life = 3.46 days) | | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |-----------------|-----------------|--| | ethylene glycol | LOW (BCF = 200) | | #### Mobility in soil | Ingredient | Mobility | | |-----------------|----------------|--| | ethylene glycol | HIGH (KOC = 1) | | # **SECTION 13 Disposal considerations** # Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. # Otherwise - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** # Labels Required | Marine Pollutant | NO | | |------------------|----------------|--| | HAZCHEM | Not Applicable | | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Version No: 2.3 Page 11 of 11 Issue Date: 10/09/2020 Print Date: 10/09/2020 #### **ERAPOL CMD88A PART B** Not Applicable # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture ### ethylene glycol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List # phenyl mercury neodecanoate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List United Nations List of Prior Informed Consent Chemicals # **National Inventory Status** | National Inventory | Status | | |-------------------------------|---|--| | Australia - AIIC | Yes | | | Canada - DSL | Yes | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Vietnam - NCI | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | # **SECTION 16 Other information** | Revision Date | 10/09/2020 | |---------------|------------| | Initial Date | 27/09/2016 | # **SDS Version Summary** | Version | Issue Date | Sections Updated | |-----------|------------|--| | 1.3.1.1.1 | 10/09/2020 | Acute Health (eye), Classification, Engineering Control, Fire Fighter (fire/explosion hazard), First Aid (eye), Handling Procedure, Ingredients, Personal Protection (eye) | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary
Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level